Topics at AZT

In research projects and studies, AZT's experts regularly examine various issues relating to automotive technology and road safety. The results are used in internal training measures and processes as well as in public publications and campaigns. 

  •  

     

    The AZT Paint Calculation System defines a wide range of paint stages for new plastic parts. These stages should be selected appropriately, especially based on the respective delivery condition, in order to enable correct calculation of the paint work to be carried out. In addition, the paint system used by the paint specialist in combination with the color shade to be painted may also affect the correct paint stage. As this has repeatedly led to queries in the past, AZT has prepared a detailed overview of the various plastic paint levels in combination with the delivery condition and the painting work to be carried out.

    This is intended to provide all users of the AZT Paint Calculation System with assistance going beyond the system description in order to avoid different understandings between the parties involved (experts & repair shops, insurance companies & experts, insurance companies & repair shops, ...). Thus, all parties involved in the damage process receive a basis for the settlement of bills according to the AZT Paint Calculation, which reduces queries, discussions and delays.

    The supplementary document to the system description of the AZT Paint Calculation can be found in the download area of the AZT homepage under "Paint" or can be accessed directly here.

  • Precisely measured and ready for the rear impact: the BioRid-II Dummy

     

    For several decades, experts at the AZT have been investigating the protection potential of vehicle seats in rear-end collisions and researching how this protection potential can be further improved. In 2004 the validation of a dummy with a biofunctional spinal column specially developed for rear-end collisions was completed in cooperation with an international working group. Since 2008 the "BioRid-II" dummy has also been established in consumer protection tests.

     

    The AZT is the only institute in the world that not only uses this dummy in isolation from the vehicle on a seat test component crash facility but also examines the overall system of vehicle and seat with the BioRid-II dummy on the driver's seat.

    In almost every crash according to the RCAR standard (structure and bumper rear), but also in vehicle-vehicle collision tests, the vehicle and seat must prove that they would provide good protection for the occupants in accordance with the EURO NCAP consumer protection criteria. In this way, it can be continuously checked whether and to what extent the continuously developed vehicle structural elements have an effect on the occupant load in rear-end collisions.

     

    In 2020 the AZT published an article in the trade journal "VKU - Verkehrsunfall und Fahrzeugtechnik" (VKU - Traffic Accident and Vehicle Technology), which shows that the dummy measurement values of the neck shear and neck shear forces, as well as those of the differential acceleration between the upper body and the head in a rear-end collision, have decreased significantly over the years.

    With the adaptation of the Euro NCAP consumer protection criteria in January 2020, the further increase in the protection potential of the seats will be pushed forward so that high acceleration peaks of the vehicle body in a rear-end collision are transmitted to the occupants as flattened as possible and the occupant load is further reduced for the same accident intensity.

     

    The complete article was published in the VKU, issue 5/2020 and is available for registered users (in German language only, part 1 and part 2).

     

  • Source: AZT

    Modern vehicles are computer networks on wheels. Million lines of software code, control units and sensor technology enable new mobility concepts, extra comfort and increased driving safety. They are paving the way to automated driving. However, computer networks are constant targets of cyber-attacks and such attacks on vehicles can not only cause financial damage, but also endanger lives.

    Hacker attacks on connected ecosystems are anything but an unrealistic possibility. “Alongside the logistics and energy sector, connected cars may become one of the main targets of IT crime,” said Klaus-Peter Röhler, a member of the Management Board of Allianz SE and CEO of Allianz Deutschland AG.

    Such risk scenarios and their implications for insurance were discussed by an expert panel consisting of Hans Adlkofer (Vice President Automotive Systems, Infineon Technologies AG), Rico Förster (Head of Commercial Motor, Global P&C, Allianz SE), Prof. Dr. Rudolf Hackenberg (Technical computer science and information security, Ostbayerische Technische Hochschule Regensburg), Jochen Haug (Chief Claims Officer and Member of the Board of Management of Allianz Versicherungs-AG), Prof. Dr. Christoph Krauß (Cyber-Physical Systems and Automotive Security, The Fraunhofer Institute for Secure Information Technology SIT), Dr. Christoph Lauterwasser (Managing Director Allianz Center for Technology) and Conrad Meyer (Digital Forensics, Central Office for Information Technology in the Security Sector, ZITiS)

    Due to the current situation around Covid-19, the Allianz Motor Day was held for the first time as a Europe-wide digital press event and the expert panel was broadcasted via online stream. The audience consisting of international press and industry representatives followed the event digitally and there was the possibility to ask questions to the panelists via online form.

    A summary of the event and accompanying material (including speeches of the Allianz board members and press releases on the topic) can be accessed via the following link:

    https://events.techcast.cloud/en/allianz-deutschland/allianz-autotag

    In the context of the event Allianz also published its positions on IT security in connected vehicles, which are summarized here

    • To confront cyberchallenges effectively, Allianz is calling for a European solution for a multi-industry Automotive Security Information Center. The center’s primary purpose would be to ensure by pooling of competencies that the mobility ecosystem is able to prepare for, and respond to, security threats, vulnerabilities and incidents, so that everyone involved can best manage their business risks and the risks to customers and third parties. 
    • Vehicle insurance will cover the consequences of accidents after hacker attacks. But if a vehicle malfunctions and an accident results, the car owner has a right to know whether that was the result of a hacker attack. In addition to the measures called for at the 7th Allianz Motor Day for using vehicle data to investigate accidents in connected and smart cars, future cyberattacks should also be recorded by an independent data trustee. Such records could be kept in compliance with the data protection laws without transmitting personal information. Recording cyberattacks could also serve to develop protective mechanism and avert future damage.
    • Vehicle manufacturers are responsible for preventing hacker attacks on their digital platforms that communicate with the vehicle. It’s up to the vehicle manufacturers to ensure that vehicles, and especially their automated systems, work without disruption, and to cover the costs of remedying defects. But Allianz will provide benefits for the consequences of accidents, and also for mere disruptions of function in the event of attacks on an individual vehicle

    A summary of the event is shown in the following film:

    External video

    This video is loaded in a YouTube player. This means that Google collects information about your use of the information provided and uses it for analysis and marketing purposes. However, if you would still like to view this video, you must change the cookie settings.


    Open cookie settings


    The Virtual Vehicle Key was one topic of the Motor Day and is shown in the following short film:

    External video

    This video is loaded in a YouTube player. This means that Google collects information about your use of the information provided and uses it for analysis and marketing purposes. However, if you would still like to view this video, you must change the cookie settings.


    Open cookie settings


     

    Expert panel in compliance with the current Corona restrictions (left to right) Prof. Dr. Rudi Hackenberg (OTH Regensburg), online participant  Prof. Dr. Christoph Krauss (Fraunhofer Institute for Secure Information Technology SIT), Fero Andersen (moderator of the event), Hans Adlkofer (Infineon) and Dr. Christoph Lauterwasser (Allianz Center for Technology)

    Expert panel in compliance with the current Corona restrictions (left to right) Prof. Dr. Rudi Hackenberg (OTH Regensburg), online participant  Prof. Dr. Christoph Krauss (Fraunhofer Institute for Secure Information Technology SIT), Fero Andersen (moderator of the event), Hans Adlkofer (Infineon) and Dr. Christoph Lauterwasser (Allianz Center for Technology)

    Conrad Meyer (ZITiS) and online participant  Prof. Dr. Christoph Krauss (Fraunhofer Institute for Secure Information Technology SIT) answer the moderator´s questions regarding cyber risks and forensic methods

    Conrad Meyer (ZITiS) and online participant  Prof. Dr. Christoph Krauss (Fraunhofer Institute for Secure Information Technology SIT) answer the moderator´s questions regarding cyber risks and forensic methods

    Rico Förster (Head of Commercial Motor, Allianz SE) and Jochen Haug (Chief Claims Officer and Member of the Board of Management of Allianz Versicherungs-AG)were broadcasted from a second stage

    Rico Förster (Head of Commercial Motor, Allianz SE) and Jochen Haug (Chief Claims Officer and Member of the Board of Management of Allianz Versicherungs-AG)were broadcasted from a second stage

    Dr. Klaus-Peter Röhler (CEO Allianz Deutschland AG and Member of the Board of Management of Allianz SE) answers the questions of the journalists

    Dr. Klaus-Peter Röhler (CEO Allianz Deutschland AG and Member of the Board of Management of Allianz SE) answers the questions of the journalists

  • Source: AGCS


    One mobility trend is the increasing electrification and the new forms of mobility resulting from it. Among other things the spread of electric cars is expected to increase rapidly. The drivers for this include consumer demand and current political efforts to combat climate change.

    In addition to the opportunities offered by electromobility, new challenges are also emerging for manufacturers, suppliers and insurers. Allianz's industrial insurer, AGCS, has addressed these issues in a comprehensive report that provides a general overview of the current market situation in the field of e-mobility and the current assessment of the resulting risks, especially for manufacturers and insurance companies.

    The AZT has been working on the subject of electric vehicles, their technical specifications and special features as well as their crash behaviour for many years. Some of the AZT's findings have therefore been incorporated into the AGCS report. The complete report in English can be downloaded here.


  • The regular exchange with users of the AZT paint calculation system has shown several times that there is potential for optimisation in the use of the AZT paint calculation system despite the detailed and freely accessible system description.


    The AZT team was repeatedly approached about identical aspects, particularly in the context of paint time and material studies. In order to minimize potential false interpretation and the resulting inconsistencies the forced pause in time and material studies caused by the corona pandemic has now been intensively used to comprehensively revise the system description in recent weeks, making it more precise in numerous places and supplementing it with case studies.

     

    As usual the updated system description is available to download for free in German and English.

     

    All the additions and clarifications that have now been incorporated will certainly not be the last changes to the system description of the AZT paint calculation.

    With the completion and evaluation of the time and material studies, the system description will also be updated again, and ideas for user-friendly adjustments are already available. A contribution describing the procedure for the time and material studies can be downloaded here (in German language only).

     


  • "Every classic car is much more than just an automobile. It's a piece of art that happens to drive (Ing. Richard Kaan).“

     

    Which heart of an automobile fan doesn't beat faster when a well-preserved classic car with an interesting history is standing right in front of him? And it is not only among classic car enthusiasts that these vehicles cause enthusiasm. Many people who are not otherwise very much involved in the subject also like old cars that are already visually striking and arouse childhood memories and other emotions.

     

    The AZT, with its almost 50-year history, has examined various vehicles in various research projects over the past decades which in the meantime have long been classified as classic cars. A classic car is a car that was first registered for traffic at least 30 years ago.

     

    However these vehicles are not only art objects or collector's items, so-called "garage gold". Even if they are rather rare in the overall vehicle market there is nevertheless a not inconsiderable number of classic cars. Today, according to figures from the German Kraftfahrtbundesamt, there are about 750,000 cars on our roads in Germany that are over 30 years old and which are occasionally involved in accidents, so that they also play a role in the damage caused. The AZT has already addressed this issue in an earlier evaluation of claims

     

    Due to the rarity of these vehicles and their special features very specific challenges arise for the experts who assess damage of a classic car. Which spare parts are available on the market? What is the right repair method to preserve the substance of the vehicle as much as possible? What is the overall value of the vehicle to be assessed? When assessing the value of the vehicle, other factors play a role than in the case of modern passenger cars. For example, the history of the vehicle must also be taken into account. These are only a few questions to which the expert should have answers ready in individual cases.

     

    General information and special training on the subject of classic cars are therefore an important part of the training of experts. AZT´s experts  are starting a longer-term project to the subject of classic cars and will prepare 2 vehicles for training purposes over the next months. Various disciplines of automotive engineering will be involved in this project and will work together. From body repair and painting to electronics and vehicle mechanics. In addition, these vehicles, which have been selected according to defined criteria, will be used to graphically illustrate developments in automotive technology over the past decades.

     

    A first vehicle has already been bought for this purpose, a mint-green BMW E21 type 318. The E21 series was the first BMW 3 series and was built from 1975 to 1983.


    Our vehicle is from the production year 1975 and has a 4-cylinder gasoline engine with 72KW/ 98hp. The BMW was in first ownership until 2006. We were able to purchase the vehicle from the third owner who had held it since 2013.



    Volker Wulle, head of the classic car project at AZT, reports on the plans with the vehicle in the near future:

    "First of all we will take care of the technical aspects of the vehicle. There are oil leaks in the engine and transmission, the carburettor has to be reset and the clutch will probably need to be replaced. The BMW will be registered and will be moved once in a while to avoid damage to the car and to check repairs. In order to be able to demonstrate the excellent condition of this vehicle at our expert training courses, we plan to have the underbody blasted with dry ice and then professionally preserve the result. Otherwise, the BMW will remain as far as possible as it now presents itself. The modified chassis with the two-tone aluminum rims from BBS is absolutely contemporary and we believe that such modifications are worth preserving just as much as absolute original conditions. The body and the interior of the vehicle present themself in the unrestored original condition which we would like to preserve as far as possible".

     

    For further training purposes for our motor experts, the purchase of a second vehicle is planned, a Mercedes of the series W123. Extensive repair work on the bodywork of this vehicle will be carried out.

     

    We will report on the further progress of the project and the further history of our classic cars on our website at regular intervals in the upcoming period.

     

    It's worth taking a look!


    Almost completely preserved engine compartment details

    Historical sticker of the ADAC

    Contemporary rim from the company BBS

    Classic compact rear light with original badging

  • One of the test candidates: Dog dummy waiting for his cue


    As a matter of fact, dogs are regarded as cargo in the sense of the German road traffic regulations and must be secured during the journey. The market offers various systems for this purpose and the Allianz Center for Technology AZT has tested samples for their practical suitability and crash safety using dog dummies. In most cases, the different securing systems are more uncomfortable for the dog owner in terms of handling than for the dog itself.

    A safety system not only helps the dog to find a safe and comfortable position in the vehicle during normal driving manoeuvres, but also during emergency braking or evasive manoeuvres. Thus most dogs get used to it quickly to stay more relaxed during the journey. Hence the driver is also less distracted by the dog. An unsecured dog, however, can move freely in the vehicle, cannot find a secure foothold, can obstruct the driver's view and distract him dangerously.

    Finally, in the event of an accident, an unsecured dog is not only considerably endangered itself, it also precipitates a serious risk of injury for the occupants due to its mass and the enormous physical forces. After an accident, an unsecured dog in a frightened, possibly injured state, can endanger helpers and other road users. And also a dog trying to protect the owner can become a danger for helpers and car passengers.


    The crash tests performed by AZT have impressively shown that dogs must be secured according to their size and weight. Dog owners should consider the following references:

    • The securing system (whether belt, harness or box) must bear a test certificate for crash safety according to ECE R17.

    • The securing system must be designed for the weight and size of the dog.

    • Read and understand the manufacturer's instructions on the safety system and how to use it appropriately.

    • The safest place for a dog is in a lashed and firmly closed dog transport box in the cargo area.

    • The box must be secured with suitable lashing straps and must not load the backrest of the rear seat bench during normal operation.

    • The seat belts of unoccupied rear seats can be additionally fastened in order to absorb loads on the backrest in the event of an accident.

    • Only smaller dogs up to a maximum mass of 7 kg can be buckled up on the rear seat with  special belt and harness systems, because harnesses generally provide too much freedom of movement and can be harmful for the dog due to an excessive jerk when tightened in an accident.

    • For dogs up to medium weight and size there are crash-proof transport boxes for the rear seats available. These boxes can also be secured with additional straps or even better using Isofix mounts.

    • Drive carefully and with foresight.


    Taking these AZT tips into account, your dog will hopefully be happy to accompany you in the vehicle as long and as safe as possible.

    The AZT wishes you and your pet a safe journey!


    External video

    This video is loaded in a YouTube player. This means that Google collects information about your use of the information provided and uses it for analysis and marketing purposes. However, if you would still like to view this video, you must change the cookie settings.


    Open cookie settings



  • UNECE WP.29 faces significant challenges in formulating UN regulations for the approval, homologation and operation of automated and autonomous vehicles. Out of 13 important safety issues that need to be regulated in detail, one main topic is the recording of accident and incident data to clarify accidents involving automated vehicles in mixed traffic. In addition the basis for the clarification of traffic offences is to be created. 

    An informal IWG EDR / DSSAD working group is currently working intensively on the definition of an Event Data Recorder (EDR) for conventional vehicles (mandatory in the EU from 2022) and an EDR for automated vehicles. As a member of the informal working group, the Allianz Center for Technology contributes the position of Allianz and the perspective of the insurance industry.

    On the one hand, this paper presents the relevance and the need for EDR data based on real insurance claims on German highways. On the other hand, it examines which data an EDR should record in the future to ensure objective accident investigation within a reasonable amount of time.

    The research work was technically supported by the University of Technology Ingolstadt (THI), the European Association for Accident Research and Accident Reconstruction (EVU) and the TÜV Süd.

  • Example of a tool for front radar calibration


    Especially in the last few years the market penetration of these driver assistance systems has risen significantly. The assessment and repair of damages is more complex as the additional technology is installed in these vehicles.
     
    Under the lead of the AZT, a joint resolution on damage repair for vehicles with driver assistance systems was therefore elaborated together with representatives of vehicle manufacturers, body and paint associations, assessors and insurance companies. The aim of this resolution is to establish a common understanding for all parties involved in the claims process with regard to a technically correct approach to the assessment and repair of driver assistance systems. The annual meeting of the German Committee for Standards in Paint and Bodywork (Deutsche Kommission für Lack und Karosserieinstandsetzung) took place at the AZT on March 3rd 2020. One of the outcomes was the adoption of “the resolution on damage repair for vehicles with driver assistance systems“.
    A free copy of the original resolution in German language can be downloaded here.
    An English translation of this document is also available.

  • In times of increasing automation and connection these data become more and more extensive. Since vehicle assistance systems today do not prevent every accident but can certainly have a significant influence, event-related data from the vehicle has become absolutely essential for accident investigation. In Germany, the amendment to the Road Traffic Act (§ 63a StVG) has for the first time regulated data processing, including data recording in the sense of a driving mode memory (DSSAD), for highly and fully automated vehicles. However the data elements defined therein are not sufficient to clarify the causes of accidents and the associated liability issues. The General Safety Regulation of the EU, revised in 2019, requires the storage of event and driving mode data from 2022 onwards. However the specification of this data by a UNECE regulation is still pending. 

    Allianz SE has taken a position on this issue and is claiming for the storage of a standardized minimum set of data following an accident as well as the transparent handling of this data. 

    Enclosed is a short video interview with Dr. Lauterwasser on the storage and use of data, especially in automated driving:

    External video

    This video is loaded in a YouTube player. This means that Google collects information about your use of the information provided and uses it for analysis and marketing purposes. However, if you would still like to view this video, you must change the cookie settings.


    Open cookie settings


    Principles of the data custodian procedure

  • Source: CES®

    DVR delegation at the BMW stand of CES, from left to right, Clemens Klinke, DVR Vice President, Member of the Board of Management DEKRA SE; Dr. Johann Gwehenberger, Deputy Chairman of the DVR Board of Management Committee for Automotive Engineering, AZT; Prof. Dr. Walter Eichendorf, President DVR, Dr. Christoph Lauterwasser, Managing Director AZT; Prof. Kurt Bodewig, DVR Vice President, DVW President; Patrick Fruth, CEO TÜV Süd Auto Service GmbH; Prof. Klaus Kompass, BMW Head of Vehicle Safety 


    The CES (formal known as the Consumer Electronics Show) is one of the world's largest trade fairs for consumer electronics. Due to the increasing merging of automotive engineering, mechatronics, electronics, Internet of Things, artificial intelligence, robotics and information and communication technology, the show has become one of the most important industry meetings for the automotive industry for about a decade, especially with regard to electromobility and automation. This is partly because german and international manufacturers and suppliers have shifted many developments relevant to automated driving to the USA and China. 

    The main objective of the DVR delegation was to view and realistically assess the current developments and innovations in the field of road safety worldwide. In a tight program and many presentations, e.g. at the booths of Audi, Bosch, BMW, Continental, Mercedes and Valeo, the DVR delegation members discussed the safety potential and possible implementation scenarios of automated driving functions with the experts. In this context, it became clear that since the still rather rudimentary developments with full-bodied announcements in January 2016, there are now often functions for automated driving that are ready for series production. At the same time the estimation of future developments has become much more realistic. The focus has changed from fully autonomous driving to cooperative driving as well as partially and fully automated functions in defined areas (so-called Operational Design Domains). This development is promising for road safety on the way to "Vision Zero". In particular the discussions showed the increasing performance of the systems through further developed sensor technology, networking and powerful data processing in the coming vehicle generations.


    Source: CES®

    Elaine Chao, US Secretary of Transportation, presented for the first time the new report of the US government on the technology of automated driving ("Automated Vehicles 4.0").

  • When transporting a Christmas tree on the vehicle roof, make sure that it is securely fastened with lashing straps (see picture). Simple rubber expanders are not sufficient.

  • One of the points to consider when buying: wheel size


    E-Scooters are right on trend. More and more people are discovering the small electric scooters for themselves. What should you consider when buying these devices with electric motor?

    Since June 2019, electrically powered scooters have been permitted in Germany and are offered in large quantities as rental equipment. Matching the Christmas business, e-scooters for private use are now also available.

    For carefree enjoyment, the e-scooter must first be insured and the license plate obtained must be affixed. This is because anyone who goes into public traffic without insurance is committing a criminal offence for driving without insurance cover. Furthermore, the driver must be at least 14 years old.

    Experts at the Allianz Center for Technology have looked into the question of what to look out for when making a choice. The focus was on safe installation and operational safety, but the legal regulations governing the operation of e-scooters were also taken into account. The AZT experts provide the following advice and information:

    • E-scooters are motor vehicles, not toys, and two people may not ride on the device.

    • A General Operating License (ABE) with type plate, vehicle identification number and a factory plate must be available.

    • The insurance must be taken out by the owner.

    • E-scooters are limited to 20 km/h and may only be driven from the age of 14.

    • An alcohol per mille limit of 0.3 ‰ and 0.5 ‰ applies as for the car. Since e-scooters are motor vehicles, the driving licence can be withdrawn if the limit is exceeded, as with a car.

    • E-scooters must be driven on the cycle path or, if this is not available, on the roadway.

    • E-scooters must not be used on sidewalks and in pedestrian zones, even with the engine off.

    • E-scooters may not be used in public parks, unlike the bicycle/pedelec.


    So that you can travel safely with your e-scooter and enjoy it for a long time, the technical construction should meet certain requirements, some of which go beyond the legal requirements:

    • Watch out for large wheels, smaller wheels have more unstable driving characteristics.

    • Pneumatic tyres are preferable because of their better handling characteristics.

    • Make sure that one of the two prescribed brakes is on the front wheel, because the rear brake increases the braking value considerably.

    • Energy recovery (recuperation) cannot be considered as a brake as it may not be available when the battery is fully charged.

    • All folding mechanisms should be robust and free from play and should not be able to release while driving - ensure that they are securely locked.

    • Eliminate additionally attached lights from the bicycle accessories. An integrated light can be switched centrally and can be powered from the drive battery at any time.

    • While observing the maximum load, also consider your backpack.

    • For theft protection, there should be a fixed eyelet for locking.


    After purchase, most e-scooters still need to be assembled. This should definitely be done by a specialist to ensure safe operation. "At the AZT, we found defects in the e-scooters under consideration which clearly required expert rework, for example, axles mounted at an angle and fittings which were not engaged, tensioned brakes, non-adjusted folding mechanisms and unsecured screw connections on the handlebar grips as well as incorrect air pressure," says Reinkemeyer.

    However, even as a user, you should regularly check all externally accessible screws for tightness - these can come loose during normal riding, as the test samples of the AZT showed. As the name e-scooter suggests, electrical safety also plays a major role. Many models are operated with the common Li-Ion batteries, which react sensitively to incorrect handling and mechanical stress and can then also catch fire. Therefore the following safety rules apply:

    • Li-Ion batteries may only be charged with the supplied charger!

    • Special care must be taken after hard blows to the battery housing or after its deformation. Then the e-scooter may no longer be used or charged and should be checked at a specialist dealer.

    • Damaged cables must be repaired or replaced immediately, including the charger.

    • Totally important: Always use the dust cover of the charger connection, or replace it immediately after loss to avoid short circuits when charging!


    Allianz recommends

    • Watch for a sturdy design with big wheels and front brakes.

    • Let a professional install the e-scooter.

    • Check the condition of your e-scooter and charger regularly.

    • Respect the safety rules for handling the charger and battery.

    • Practise driving and manoeuvring before driving in traffic.

    • Drive only with lights and helmet.



      This information can also be found in our press release (in German language only).

    Pictures

    lock-up option and drum brake at the front

    sturdy folding mechanism

    larger wheels are usually also wider and therefore safer, e.g. when driving over manhole covers

    rear disc brake and insurance number plate

    built-in lighting

    dust cover for the charging connection

    pneumatic tires with valve

  • Presentation of Repair & ADAS functionality by Dr. Lauterwasser


    As representatives of the AZT, Dr. Christoph Lauterwasser and Carsten Reinkemeyer have participated the conference. This is the first time that the RCAR annual conference was held in China, and according to Haimao Jia, president of CIRI, it is a great honor for the institute to host this event and welcome RCAR members and their partners to Beijing.

     

    42 experts from the insurers' research institutes dealt with the following significant topics, among others:

    Jaewon Lee (KART) from Korea now leads the ADAS working group which deals with the effects of the repair methodology on sensor technology; calibration methodology and diagnostic equipment.

    In relation to electromobility the current damage of batteries and its effects on the insurance industry were discussed with regard to a) the manufacturer's regulation and b) the reduction effect of insurers.

    Exchange on the current status of autonomous and connected vehicles & cyber security.


  • The e-mobility experts from Cleanelectric discussed, among other things, the special properties of electric vehicles and their influence on crash behaviour, their relevance from the insurance point of view and the future of e-mobility. The result is an interesting podcast that can be downloaded from https://www.cleanelectric.de/azt/ and from the current streaming platforms such as Spotify and Deezer under "Cleanelectric".



  • In order to provide a fair and correct explanation of accidents, even in modern vehicles, Allianz is calling for better transparency and uniform standards for data stored in cars. At the 7th Allianz Autotag on September 19th , 2019 at the Allianz Center for Technology, Allianz board members and experts discussed digital accident reporting with representatives of the mobility industry.

    Allianz Germany CEO, Dr. Klaus-Peter Röhler, who gave insights on the future of mobility and the role of the insurance industry in his welcome speech. Afterwards the cooperation between ADAC and Allianz, within the framework of ADAC auto insurance, was presented and Frank Sommerfeld, board of private property insurance business, informed about current developments of E-scooters and BonusDrive. 

    After the keynote of Joachim Müller, Management Board Allianz Deutschland, experts from Allianz, the automotive industry, science and the authorities discussed the main topic of the day - digital accident clarification for modern vehicles. The relevance of this topic was illustrated by a live crash of a car on a pedestrian dummy initiated by the AZT team on the court of the Allianz Center for Technology. 


    External video

    This video is loaded in a YouTube player. This means that Google collects information about your use of the information provided and uses it for analysis and marketing purposes. However, if you would still like to view this video, you must change the cookie settings.


    Open cookie settings



    The requirements of the Allianz regarding transparency and uniform standards for data stored in cars and further details on the subject can be found in a published press release.

    Allianz's key positions on digital accident reporting:

    • Allianz calls for more transparency on the vehicle data stored in the vehicle in the event of a traffic accident. Vehicle owners must be able to easily and uncomplicatedly obtain information about the data stored in their cars.

    • The standards currently being developed by the EU for future accident data memories and driving mode memories must be suitable for solving traffic accidents involving modern vehicles. A short frame of a few seconds before and after the accident is sufficient.

    • In particular interventions by driver assistance systems must be stored if they are closely related to an accident. This is necessary because driver assistance systems are increasingly influencing the outcome of accidents. 

    • In the case of damage of property it should be up to the person concerned to decide whether his vehicle's data should be used for accident clarification. If people are injured or killed, or if it is a criminal offence, the public interest in clarifying the question of guilt prevails. In this case the data may also be used against the will of the person concerned.

    • Allianz recommends an independent trustee to whom the data required for accident clarification will be transferred for highly automated and fully automated vehicles. No interested party should have exclusive access to this data - neither one of the parties involved in the accident nor the vehicle manufacturer or insurer.

    Bilder

    Opening speech by Allianz Germany CEO, Dr. Klaus-Peter Röhler

    Frank Sommerfeld , board of private property insurance business , provides information on new trends in road traffic and their impact on road safety

    In the panel discussion Jochen Haug explains a model for the transparent, standardised and fair handling of data in the context of accident clarification

    Key Note of Joachim Müller, Management Board Allianz Deutschland,  on the use of data to clarify accidents

    Crash test with pedestrian dummy PRIMUS breakable from CTS

    Dummy diagnosis after the crash

    Dr. Christoph Lauterwasser (Managing Director of the AZT) together with the moderator FeroAndersen at the crash vehicle

    Sach Privat-Vorstand Frank Sommerfeld informierte über neue Trends im Straßenverkehr und über die Auswirkungen auf die Verkehrssicherheit.

    Panel discussion on digital accident clarification

    Participants of the panel discussion (from left to right): Gundolf de Riese-Meyer (Police Headquarters Düsseldorf), Dr. Christoph Lauterwasser (Managing Director AZT), Jochen Haug (Claims Director Allianz Versicherungs-AG), Dr. Michael Weyde (Expert for Accident Reconstruction)

    Representation of the AZT - Event Data Recorder (EDR)

  • DeTomaso - Test of braking performance, picture: Andreas Kronthaler


    Owning and maintaining classic cars has always been an emotional hobby: the vehicles remind of old times and offer a highly individual driving experience. In addition classic cars are real eye-catchers - 42% of all Germans are happy when they see a vintage car.

    According to the IfD Allensbach Oldtimer Study around 22% of all people in Germany (around 15 million) are interested in classic cars and motorcycles.


    Today there are about 750.000 cars on our roads in Germany which are more than 30 years old and unfortunately are occasionally involved in accidents.

    With that in mind, the AZT, together with other partners carried out an up-to-date analysis of KH and VK collision damage. In cooperation with the Graz University of Technology the structure of classic car accidents as well as the causes and consequences of accidents were analysed in detail. In this context a comparison of the brake delays for selected vintage cars and newer vehicles was carried out as a very useful addition to the activities of the analytically active expert.


    The key finding of the study is that the incidence of accidents in vintage cars differs significantly from that of current vehicle generations. This is due in particular to different driving dynamics characteristics and the maintenance condition of the vehicles. For example, sudden vehicle damage was often observed as the cause of accidents in vintage cars. In addition, the use of classic cars - rarely as everyday vehicles, often as hobby and leisure vehicles - has an impact on accident typology. The brake deceleration measurements also show how clearly the performance of classic car brake systems is inferior to that of today's vehicle models. This also contributes to the typical accident occurrence of classic vehicles and must be taken into account by the vehicle expert in individual cases, e.g. in accident analysis and accident reconstruction.


    The complete results of the study can be found in the following article (in german language only) which was published in the VKU.

  • A day at the paint shop.


    At the AZT, young people regularly take the opportunity to gain an impression of the practical application of automotive technology and to contribute their knowledge in form of internships or working student activities. It is an enrichment for both sides.


    Following Vincent states about his time within the Allianz:

    I decided to do this internship as I have always been interested in cars and the crash track of the AZT.


    Monday, 15th of July 2019

    At first I was warmly welcomed by my supervisor Mr. Kitzmann. I introduced myself to the colleagues throughout the day. The tasks of the AZT were illustrated with the help of lectures and presentations. In exchange with employees the function of the crash track was explained and I was able to learn detailed information about the course of an accident reconstruction. At the end of the day I was taking part at a guided tour of the building where I have received further information about the AZT.


    Tuesday, 16th of July 2019

    I spent the day in the paint shop and had the opportunity to watch the professionals how to repair car parts. For the preparation of a paint job the following was done: Every single step is documented, even the removal and putting on of the protective clothing. I was able to take a lot of information from the repair shop. In between I helped my colleagues to scan documents.


    Wednesday, 17th of July 2019

    On Wednesday I have looked over the expert's shoulder when investigating hail damage. The damage is calculated with the assistance of a computer program. First the affected car drives into the hail scanner. The number of scanned dents is then displayed on the PC and the damage can be calculated. The analysis of the hail scanner is verified by hand with a dent mirror.


    Dent mirror for the detection of hail damage.


    Thursday, 18th of July 2019

    Today the work from Tuesday was finished. In the paint shop the colleagues first mixed the colour - already determined for the bumper- out of ten different colours. In the next step they painted and assembled the bumper. The colour of the painted bumper corresponded perfectly with the one the car. At the end of the day an employee explained the high-speed cameras of the crash track.


    Friday, 19th of July 2019  

    The last day of my internship I spent on the huge Allianz Campus in Unterföhring. There I have learned a lot about the office work of the colleagues who send the experts home to the customers. A special computer program is used in order to inspect the damage there. Alternatively the damage is examined via livestream.


    Conclusion: In the end, I have to say, I have learned a lot about painting, repairing and assembling car parts. I have also learned a lot about the crash track. I was particularly surprised by the latest technology which the AZT´s team work with efficiently. The content of my internship was great and I have enjoyed the week within the Allianz. 

  • Hail scanner: The vehicles of the affected Allianz customers are inspected with the latest technology.


    12th of July, 1984 shortly before 8 p.m.: A bright yellow sky announced the hailstorm disaster in Munich. A ghostly backdrop. Minutes later an inferno broke out: huge ice grains up to the size of a tennis ball pelted on people, animals, houses, cars, fields and gardens. 

    The result: Three dead, more than 300 injured, over 200,000 damaged cars and further property damage amounting to more than three billion marks within 20 minutes - the largest loss event in the history of the German insurance industry to date. At that time, the dent repair technique was not yet known, so every dent was knocked out, smoothed and painted. The vehicle repair costs for most motor vehicles were higher than the current market value, so that a total loss was incurred. In 1984 there were no laptops yet, so that an expert opinion for the experts in the AZT was much more time-consuming and costly than today. All dents, on average between 50 and 250 per vehicle, were counted and recorded manually.


    A newspaper advertisement of Allianz in 1984. It says: "Allianz to all customers: We pay."


    On Whit Monday 2019, 10th of June, a similar storm has happened again in the Munich region. Hail grains with a diameter of up to six centimetres crashed through car and window panes during the night on Tuesday and caused numerous other damage to buildings.

    Many cars resemble a lunar landscape. They are covered with dents caused by hailstones. Allianz is currently expecting up to 20,000 damage cases. The total expenses for cars and the other property insurance is estimated at around 190 million Euro. For the insurers, this means peak period.


    The damaged vehicles are inspected in the AZT workshop.


    Allianz has set up eight hail inspection centers - one of them at the Allianz Center for Technology (AZT) - to process the large number of claims quickly, efficiently and in a customer-oriented manner. Since June 17th, 2019 several automotive experts have been responsible for inspecting hail damage to the cars of Allianz customers here. The special feature: A modern hail scanner, which enables the fast, automated recording of hail damage to vehicles following mass damage events caused by storms, supports Allianz colleagues in their work.  In addition, the AZT workshop offers the perfect infrastructure to ensure the best possible organizational process. As early as 2018, the AZT was working on a scientific project on hail damage. The laboratory test deals with an analysis of different carbon fibre reinforced plastics (e.g. carbon) regarding hail resistance.


    Further information on the practical test can be found in our topic "Hagelschaden" ("hail damage" - in German language only).


    External video

    This video is loaded in a YouTube player. This means that Google collects information about your use of the information provided and uses it for analysis and marketing purposes. However, if you would still like to view this video, you must change the cookie settings.


    Open cookie settings



  • In cooperation with international institutes (RCAR), the AZT has further developed the virtual key requirements, published in Germany last year, into a globally applicable standard. "This is the first global standard for IT security in the theft protection of motor vehicles which can be used uniformly in all markets as a basis for developers and as a basis for the regulation of total theft by insurers," says Jochen Haug, member of the Allianz Board of Management responsible for claims.


    The requirements for virtual vehicle keys, according to the international RCAR standard, can be downloaded here.


    Further details on the virtual vehicle key can be found in our current Allianz press release (in German language only).




  • "Despite good successes in recent years, there is still considerable potential for improvement in the area of pedestrian safety. 4,000 injured and in some years up to 70 killed pedestrians in Austria cannot and must not simply be tolerated".

    This statement by Xaver Wölfl, board member of Allianz Austria, illustrates the international relevance of pedestrian safety.

    On Wednesday, 22 May, the Allianz Pedestrian Study was presented to the Austrian press in Vienna. Xaver Wölfl and Dr. Jörg Kubitzki, traffic psychologist from AZT and author of the study, presented selected results and answered journalists' questions.

    The report of Allianz Austria and the corresponding press release in German language can be downloaded here.


  • Joachim Müller, Management Board Allianz Deutschland, on the right: Dr. Christoph Lauterwasser, Managing Director of the Allianz Zentrum für Technik


    Less sound. eMobility. E-scooters.

    On Saturday, 25th May, the Formula-E racing cars did their laps in Berlin. The Formula-E is a family-friendly event with a large supporting program around the race. Visitors are able to experience the future of mobility and learn about the climate-friendly and sustainable economy. Many large companies are represented off the track on the Tempelhof field. Allianz also presented itself as a partner of motor sports with a stand in the sponsor area. Joachim Müller (Management Board Allianz Deutschland)  and Dr. Christoph Lauterwasser (Managing Director of the Allianz Zentrum für Technik) have already been on site the day before. In discussion with Allianz Corporate Communication, Joachim Müller explained why Allianz is involved in Formula-E: “Sustainability is an extremely important issue for us. We have been climate-neutral since 2013 and are working to ensure that in future. Allianz will also generate all the electricity for all global companies from green electricity. Formula-E supports this goal enormously. The pioneering technology in formula racing will ultimately be seen on the roads later. And that's why we're here."


    This year the E-scooter is the focus of attention in Berlin. E-scooters are allowed to participate officially on the road from 15th of June, in case they are insured. Allianz wants to promote new mobility concepts with low rates. Joachim Müller announced "we will be the market leader for e-scooters". The whole interview with the Tagesspiegel in german language is available here.


  • Isabella Ostermaier (right in the picture) receives the ADAC Young Talent Award from Dr. Andrea David


    Isabella Ostermaier, former master student in accident research at Allianz Zentrum für Technik, was awarded the UFO Young Investigators Price 2019 of the ADAC Foundation for her master thesis on "effectiveness analysis of automated driving functions".

    The price was awarded at the symposium for accident research and road safety on April 2nd  and 3rd , 2019. Her thesis deals with the effects of autonomous driving (SAE Level 3 und 4) on road safety. The accident prevention potential of automated driving functions in the next 20 years is unfortunately not as high as presumed. 

     

    By supporting young scientists in the field of accident research and road safety, the ADAC Foundation would like to give young researchers the opportunity to present their work to experts. This year's pricewinner was selected by the UFO Expert Advisory Board, a committee of external experts. The award was presented by Dr. Andrea David, Chairman of the ADAC Foundation.

     

    The former TU student, Isabella Ostermaier, has been project manager in accident research at the ADAC Technik Zentrum in Landsberg since October 2018.

      

    The AZT team congratulates Isabella Ostermaier!



  • A current traffic safety study by Allianz on the mobility and safety of pedestrians shows which accident situations are most dangerous, how high the distraction potential of smartphones & Co. is and which technology can help to prevent accidents.

    The safety of pedestrians remains an important issue. In Germany, more than 400 pedestrians still die in road traffic every year (2018: 457). Nevertheless, pedestrians are often not considered independently in the context of road safety. According to Allianz, however, pedestrian safety must not be allowed to sink into the broad spectrum of problems faced by "unprotected road users" and pedestrians need their own public image. For this reason, Dr. Jörg Kubitzki, accident scientist at the Allianz Center for Technology, developed the study "Sicher zu Fuß – Mobilität und Sicherheit von Fußgängern".

    Core results of the study are among others:

    • More than half of the pedestrians killed are over 64 years old.

    • Distraction also plays an important role with pedestrians. Listening to music and texting are special accident risk factors.

    • Every fourth pedestrian collision occurs when reversing.

    • Improved pedestrian recognition and automatic emergency braking are also required when reversing.

    • Allianz recommends updating the European Parliament's Pedestrian Charter.

    Further information can be found in the study and the related press release (both documents in German only).



  • In several countries there is a legal requirement that under icy or snowy road conditions dedicated winter tyres have to be used. Therefore motorists know the necessity to change the vehicle tyres. Hence many car owners are forced to transport their car wheels from A to B. Especially with compact cars, transporting the wheels to change the tyres poses a greater challenge, as the wheels cannot be transported lying down in the boot for space reasons. In many cases, the wheels are therefore placed upright next to each other in the load compartment and the rear seat is released in its lock, as otherwise the tailgate cannot be closed.

    As practical as this procedure is, however, it can also be dangerous: The rear bench can fall over and the wheels roll against or between the front seats even in the event of minor unevenness or braking. This is not only an enormous distraction for the driver, it also increases the risk of injury. To illustrate this, the AZT showed recordings of a normal ride as well as of a crash test. You can see the results in the video at the end of the page.

    The transport of unsecured wheels inside a passenger car can not only be dangerous but may also not comply with the legal requirements in your country. At least for your own safety the goods in a vehicle must be secured in such a way that they can’t slip, fall over, roll back and forth or fall down even in the event of emergency braking or sudden evasive movement. The approved technical rules must be obeyed.

     The following points must therefore be observed when transporting wheels in passenger cars:

    • Either you place the wheels in the hold and lash them individually or you place them upright next to each other in the hold and pull a lashing strap through the lashing eyes of the vehicle and centrally through the rims.

    • The securing must be carried out with suitable lashing straps (GS symbol, undamaged, sufficient tensile force).

    • The maximum tensile force of the belts is given in daN (decanewton). As a rule of thumb, the value of the tensile force in daN should be 25 times higher than the mass of the load in kg. An example of the lashing of four wheels: Depending on tyre size and rim, the weight of a car wheel is between approx. 15 and 25 kg. The maximum tractive force of the belt should therefore be at least 1500 daN (= 4 x 15 x 25).

    • Single wheels can also be stowed in the footwell behind the passenger seat, but only if the passenger seat remains unoccupied.

    • In the event of an accident, the seat belts on the unoccupied rear seat can stabilize the backrest in such a way that the wheels in the hold do not additionally endanger the front passengers.

     If these rules are followed, it can be best ensured that the wheels do not injure the vehicle occupants in the event of a rear-end collision.

    External video

    This video is loaded in a YouTube player. This means that Google collects information about your use of the information provided and uses it for analysis and marketing purposes. However, if you would still like to view this video, you must change the cookie settings.


    Open cookie settings



  • The Ismaninger Schaefflertanz is performed by the members of the Bauerntheater Ismaning. The seven-year rhythm of the Munich Schaeffler is adhered to.

    It is a traditional guild dance of the Schaeffler (barrel makers).



  • A test setup with the following details was tested: 

    • Frontal impact at 50 km/h

    • The roof box was loosely loaded with winter sports equipment (skis, ski boots, ice stick, drink bottles). The permissible load capacity of the roof box was not exceeded. 

    • The load was not secured in the roof box, as is often the case.


    The following results were obtained in the crash test:

    • The unsecured contents of the roof box shifted to the front due to the acceleration forces acting, the skis broke through the front wall of the box almost unbraked. 

    • In addition, the roof box was partially detached from the base carrier because the clamp fastenings, which were open on one side, could not withstand the forces.


    The following video illustrates the consequences of an incorrectly loaded roof box in a frontal collision at 50 km/h. The roof box was not loaded correctly when the frontal collision took place.

    External video

    This video is loaded in a YouTube player. This means that Google collects information about your use of the information provided and uses it for analysis and marketing purposes. However, if you would still like to view this video, you must change the cookie settings.


    Open cookie settings




    The following recommendations can be derived from the observations described:

    • When using a roof box, check the permissible roof load. These can be found in the operating manual of your vehicle. As part of the test, the weight of the roof box, roof rack and load must be added together.

    • Also check the load capacity of the roof rack, which is specified in its operating instructions.

    • Do not load the roof box beyond its maximum payload. Heavy individual items, e.g. ski boots, should be stowed at the bottom of the trunk and preferably not in the roof box. Bulky items that can be easily lashed down (e.g. skis) as well as lighter items (e.g. clothing, ski helmets) can be transported in the roof box.

    • When attaching the roof rack and roof box, follow the manufacturer's installation instructions carefully. Preference should be given to roof boxes whose fastening elements completely enclose the rail of the roof rack.

    • The roof box should offer good lashing possibilities on the inside with stable lashing eyes and/or brackets to secure the load. These lashing devices should be made of metal. Plastic can become brittle in winter, is generally more sensitive to impact and can be damaged, for example, by hard objects such as ski bindings when loaded carelessly.

    • When driving with a roof box, pay attention to the changed driving behaviour of the vehicle. The higher centre of gravity makes the vehicle more unstable when cornering or braking. The superstructure also changes the aerodynamics of the vehicle and makes the car more susceptible to wind.

    • And think of the changed headroom! This applies especially to higher vehicles such as vans, SUVs etc. when entering underground garages.

    • Also remember to check or adjust the tyre pressure before starting the journey if there is an additional load.

    • The total payload with passengers, luggage and superstructures must not exceed the permissible total weight of the vehicle.


    The AZT wishes you a good and accident-free journey!

  • External video

    This video is loaded in a YouTube player. This means that Google collects information about your use of the information provided and uses it for analysis and marketing purposes. However, if you would still like to view this video, you must change the cookie settings.


    Open cookie settings


    We have two safety recommendations for the contemplative and wintry season:

     

    When transporting a Christmas tree on the vehicle roof, make sure that it is securely fastened. Simple clamping rubbers are not enough, as our test shows:

    External video

    This video is loaded in a YouTube player. This means that Google collects information about your use of the information provided and uses it for analysis and marketing purposes. However, if you would still like to view this video, you must change the cookie settings.


    Open cookie settings


    Video: The Christmas tree was fastened here only with elastic bands. These do not withstand the load.


    The tree should be fastened better with tension belts (pay attention to the CE seal):

    External video

    This video is loaded in a YouTube player. This means that Google collects information about your use of the information provided and uses it for analysis and marketing purposes. However, if you would still like to view this video, you must change the cookie settings.


    Open cookie settings


    Video: Here the Christmas tree was fastened with neat tension straps and stays safely on the roof.

  • In the first two films, the subjects of buckling up in the car and wearing a helmet when riding a bicycle were discussed, but now the blind spot of a truck is explained. The AZT experts will receive prominent support from Nina Moghaddam, who, together with twelve-year-old Lukas and safety researcher Carsten Reinkemeyer, will provide insights into the dangers of the blind spot and explain to children what they need to pay particular attention to in road traffic.

    Blind spots are areas on cars, trucks or other motorised vehicles that are difficult or impossible to see. Anyone who has ever sat in a truck knows how difficult it is for the driver to see the surroundings. Despite mirrors, pedestrians and cyclists are often barely visible to the driver because they are in a blind spot. According to analyses by the German Federal Highway Research Institute (Bundesanstalt für Straßenwesen), almost 700 cyclists and pedestrians are killed or injured each year in accidents caused by the blind spot in a truck turning right.

    An important reason for the accidents is the movement of the truck when turning off. In order not to cut the bend, they first drive straight ahead into the intersection before turning sharply. The rear wheels ride closer to the roadside - e.g. the cycle path - than the front wheels. A cyclist or pedestrian recognizes this too late and can´t leave the danger zone in time.

    That's why cyclists and pedestrians should never overtake trucks on the right and keep an eye on the rear. "Even if the cyclist has the right of way, he should slow down and check by looking over his shoulder whether the way is really free," says Carsten Reinkemeyer.

    In cooperation with the German Road Safety Council (DVR) the DVD is made available to all schools and the police in Germany. Copying and distribution for non-commercial purposes is expressly permitted.

    Further information can be found in the press release (German version) on the subject and in the supplementary material (German version) on the DVD.

    External video

    This video is loaded in a YouTube player. This means that Google collects information about your use of the information provided and uses it for analysis and marketing purposes. However, if you would still like to view this video, you must change the cookie settings.


    Open cookie settings


    3rd safety film for children: „Schon gewusst? – der tote Winkel“

    Related Videos

    External video

    This video is loaded in a YouTube player. This means that Google collects information about your use of the information provided and uses it for analysis and marketing purposes. However, if you would still like to view this video, you must change the cookie settings.


    Open cookie settings


    1st safety film: 
    „Willi Weitzel hat´s geschnallt – Kinder: Richtig anschnallen“

    External video

    This video is loaded in a YouTube player. This means that Google collects information about your use of the information provided and uses it for analysis and marketing purposes. However, if you would still like to view this video, you must change the cookie settings.


    Open cookie settings


    2nd safety film: 
    „Willi Weitzel hat´s geschnallt – Fahrradfahren: Immer mit Helm!“

  •  

    At the 6th “Allianz Autotag” at the end of September at the AZT, Allianz board members, AZT experts and representatives of the automotive and mobility industries discussed the topic of "Parking 4.0". The AZT presented a new test standard for actively braking parking and manoeuvring systems, which was developed together with international partners.

    The topic of parking plays a major role in today's traffic: The search for a parking space causes one third of the traffic in European city centres. On average, we spend 41 hours a year searching for a parking space. In Germany, drivers spend an average of ten minutes looking for a parking space, covering a distance of several kilometers (Source: Siemens 2015, Statista 2017). In Munich, 12.5 percent of the traffic area or more than 5,300 square kilometers serve as parking space. This puts Munich at the top in Germany (Source: Ubeeqo 2017).

    The topic of parking is also of great relevance to insurance companies. Almost every second reported claim in motor insurance is related to a parking and manoeuvring accident. For these losses alone, around 3.4 billion Euro are paid out annually to customers and injured third parties in Germany. Consequently, not only the automotive industry is interested in the further development of parking and manoeuvring assistants. A recent study by the German Association of Insurers (GDV) with the participation of the AZT shows that two thirds of all parking accidents could be avoided with the help of actively braking parking and manoeuvring systems. This involves possible savings of about 2.1 billion Euro per year for the insurance industry. Managing Director of the AZT Dr. Christoph Lauterwasser sums it up strikingly: "One of our biggest opponents is the bollard.”

    Current technological developments in the automotive sector as well as in support of parking traffic and their possible effects on motor insurance were discussed with experts from the respective fields in a panel discussion. What it looks like, for example, when a car actively brakes with technical support in parking or manoeuvring situations, was demonstrated live to the audience on site. A BMW was first driven towards a bollard serving as a test object, then towards a "soft vehicle target" in order to demonstrate the automatic, independent braking of the vehicle. These scenarios also served to illustrate the new test standard for actively braking parking and manoeuvring systems, which the AZT developed together with international partners and which was presented to the public for the first time at the “Allianz Autotag”. 

    Further details on the test standard, the recommendations of Allianz derived from it and the most important positions of Allianz on the subject of "Parking 4.0" are summarized in a press release.


    Pictures and Videos

    External video

    This video is loaded in a YouTube player. This means that Google collects information about your use of the information provided and uses it for analysis and marketing purposes. However, if you would still like to view this video, you must change the cookie settings.


    Open cookie settings


    Summary report on the 6th Allianz Autotag

    Panel discussion on the future of parking with representatives from the automotive, mobility and insurance industries

    Panel discussion on the future of parking with representatives from the automotive, mobility and insurance industries

    Dr. Christoph Lauterwasser, Managing Director of the AZT, explains the new test standard for actively braking parking and manoeuvring protection systems to journalists

    Dr. Christoph Lauterwasser, Managing Director of the AZT, explains the new test standard for actively braking parking and manoeuvring protection systems to journalists

    “Soft Vehicle Target" as test object in the context of the new test standard

    “Soft Vehicle Target" as test object in the context of the new test standard

    Reverse AEB - test with bollard as test object

    Reverse AEB - test with bollard as test object


  • Theft is a relevant topic for auto insurance and leads to high average claims amounts. This results significantly increased claims costs for a large number of vehicle models. 

    For this reason AZT has, amongst other things, been working on vehicle theft prevention for several decades. A significant result in this regard was the introduction of a legal requirement for electronic immobilizers in newly registered vehicles from 1998, which was based on the standards and requirements developed by experts at AZT. 

    Currently the development and integration of electronic components in the automotive industry is entering a new dimension as more and more innovative and networked comfort and customer functions are launched on the market. Among other developments, the first OEMs are now also starting to offer their customers a virtual key as an additional option alongside the conventional physical car key when purchasing a vehicle. So the smartphone is becoming a car key. In future, the driver will use the app to unlock and start the vehicle; the key is going virtual. 

    Virtual keys and other digital after-sale services rely on globally networked systems. The keys bring with them not only an increase in comfort but also new attack vectors on the interfaces between the entities in these networked systems. What about data security for example, what happens when the system is hacked? 

    The technology also leads to many questions for insurance, in particular in the case of total theft. Until now, the customer would present the complete set of keys to the insurer for the settlement of the claim. In principle, this also applies for the virtual car key. No customer will want to send their smartphone to their insurer in the case of total theft.

    To counter these challenges, AZT analyzed the virtual vehicle key system, and looked at the current and potential future risks and attack vectors in order to formulate the requirements for virtual vehicle keys. This resulted in guidelines covering the design of virtual vehicle keys as well as the storage and processing of the respective data. With this, auto manufacturers are given a set of guidelines, applicable to all technologies and manufacturers, that serve to retain or increase the level of protection offered to the customer and their vehicle by the current immobilizers.

    The four most important requirements for the virtual vehicle key

    • The virtual vehicle key must not be able to be copied, and, as with a physical key, the number of keys in circulation must be transparent.

    • A clear, transparent and fixed list of all authorized vehicle users must be available to the customer, and to the insurer in a loss event. In the case of total theft, the customer must also be able to immediately revoke all virtual keys in a demonstrable manner.

    • Authorization to enter the vehicle must be separate from authorization to drive the vehicle, so as to not undermine the existing layer of protection offered by the electronic immobilizer and to ensure the security of future service models such as "Delivery to the car boot".

    • The data environment used to access and store the virtual key must be completely separate from other applications. The processing and storage of all security-critical data, such as authorizations and key calculations, must be confined to a secure storage and execution environment.

    A full description of AZT's requirements for virtual vehicle keys can be found here:

    Requirements for virtual vehicle keys

    Pictures and videos

    Berechtigung zum Motorstart mittels Virtuellem Fahrzeugschlüssel

    Authorization to start engine by means of virtual vehicle key

     

    Angriffsvektoren auf das Ökosystem Virtueller Fahrzeugschlüssel

    Attack vectors on the ecosystem virtual vehicle key

     

     

    Ökosystem Virtueller Fahrzeugschlüssel

    Ecosystem virtual vehicle key

  •  

    The key findings of the tests were:

    • Many standard bike racks available on the market are not suitable for transporting pedelecs due to their heavy weight. The maximum total permissible weight of the rack indicated by the manufacturer must always be observed. This goes for both rooftop racks and models that are attached to the tow-bar.

    • For rooftop racks the maximum roof load of the car must also be taken into account.

    • In the tests, the fastening of the pedelecs to the car failed. This caused damage to the bike and the car, even in every day driving situations. So the key factor is not just the total load on the rack, but also the load on each of the rack's holding rails. If an individual holding rail is overloaded, it will break and not be able to hold the pedelec in place anymore.

    • In a frontal crash test with a rooftop rack, the pedelecs were shot from the roof like bullets, which would pose a serious danger to other road users in the case of a real accident involving pedelecs transported in this manner.

    • Bike racks that are mounted on the rear of the car are recommended because, in the case of a head-on collision, the pedelecs will be pressed up against the vehicle and are therefore less likely to become detached.

    For this reason, AZT recommends that pedelecs be transported on the rear of the vehicle. In addition, you should ensure that the rack and the individual holding rails are designed for the weight of a pedelec before using it to transport them. During any pauses in the journey the rack should be checked to make sure that all fastenings are still intact and that the pedelecs are still securely attached.

    The following film gives more information on the tests and the results.

     

    External video

    This video is loaded in a YouTube player. This means that Google collects information about your use of the information provided and uses it for analysis and marketing purposes. However, if you would still like to view this video, you must change the cookie settings.


    Open cookie settings


    Pictures and videos

    Crashversuch mit Pedelecs auf dem Fahrraddach auf dem Schlitten

    Crash test with pedelecs on the car roof on the test sled

     

    Fahrversuche (Brems- und Ausweichmanöver) mit Pedelecs auf dem Heckträger

    Driving tests (braking and avoidance manoeuvres) with pedelecs on the rear bicycle carrier

     

     

    Crashversuch mit Pedelecs auf dem Fahrraddach auf dem Schlitten

    Crash test with pedelecs on the car roof on the test sled

     

    Fahrversuche (Fahrbahnunebenheiten) mit Pedelecs auf dem Heckträger

    Driving tests (road unevenness) with pedelecs on the rear bicycle carrier